本文为原创文章,未经本人允许,禁止转载。转载请注明出处。
1.使用python链接数据库
1
2
3
4
5
6
7
8
import sqlite3 as lite
con = lite.connect('test.sqlite')#如果不存在test.sqlite,则会新建
cur = con.cursor()
cur.execute('SELECT SQLITE_VERSION()')
data = cur.fetchone()
print(data)#输出版本:('3.26.0',)
con.close()
也可以使用with
来省略close
操作:
1
2
3
4
5
with lite.connect('test.sqlite') as con:
cur = con.cursor()
cur.execute('SELECT SQLITE_VERSION()')
data = cur.fetchone()
print(data)
2.透过SQLite做数据新增、查询
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
with lite.connect('test.sqlite') as con:
cur = con.cursor()
cur.execute("DROP TABLE IF EXISTS PhoneAddress")#会舍弃掉已存在的PhoneAddress表格
cur.execute(
"CREATE TABLE PhoneAddress(phone CHAR(10) PRIMARY KEY, address TEXT, name TEXT unique, age INT NOT NULL)")
cur.execute("INSERT INTO PhoneAddress VALUES('0912173381','United State','Jhon Doe',53)")
#也可写为:
#cur.execute("INSERT INTO PhoneAddress(phone,address,name,age) VALUES('0912173381','United State','Jhon Doe',53)")
cur.execute("INSERT INTO PhoneAddress VALUES('0928375018','Tokyo Japan','MuMu Cat',6)")
cur.execute("INSERT INTO PhoneAddress VALUES('0957209108','China','Zhang San',29)")
cur.execute("SELECT phone,address FROM PhoneAddress")
#取出所有栏位:
#cur.execute("SELECT * FROM PhoneAddress")
#fetchone一次只取一组数据
#data = cur.fetchone()#data为:('0912173381', 'United State')
#fetchall一次取所有数据
data = cur.fetchall()#data为:[('0912173381', 'United State'), ('0928375018', 'Tokyo Japan'), ('0957209108', 'China')]
for rec in data:
print(rec[0], rec[1])
输出为:
1
2
3
0912173381 United State
0928375018 Tokyo Japan
0957209108 China
3.使用pandas存储数据
使用pandas的DataFrame批量存入数据。
1
2
3
4
5
6
7
8
9
import sqlite3 as lite
import pandas
# 建立DataFrame
employee = [{'name': 'Mary', 'age': 23, 'gender': 'F'}, {'name': 'John', 'age': 33, 'gender': 'M'}]
df = pandas.DataFrame(employee)
# 使用pandas存储数据
with lite.connect('test.sqlite') as db:
df.to_sql(name='employee', index=False, con=db, if_exists='replace')
4.代码地址
Gitalking ...